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 1 

Background 1 

Lumbar degenerative disc disease (DDD) is a major contributor to chronic low back pain and 2 

disability. Total disc replacement (TDR) offers a motion-preserving alternative to spinal fusion; 3 

however, articulating ball-and-socket designs, such as the unconstrained CHARITÉ and semi-4 

constrained ProDisc-L, often fail to replicate the biomechanical properties of the native disc. 5 

This study presents the first in vitro range of motion (ROM) comparison of a viscoelastic TDR, 6 

the AxioMed® Freedom Lumbar Disc (FLD), to both legacy devices and cadaveric lumbar spine 7 

benchmarks. 8 

Methods 9 

The FLD underwent in vitro biomechanical testing under simulated physiologic loading to assess 10 

ROM in flexion-extension, lateral bending, and axial rotation. ROM values were compared to 11 

publicly available FDA Summary of Safety and Effectiveness Data for CHARITÉ and ProDisc-12 

L, as well as published data from cadavers and healthy volunteered lumbar discs. 13 

Results 14 

The FLD demonstrated ROM values within native physiologic ranges: 3.0–5.3° (flexion), 1.9–15 

5.0° (extension), ±4° (lateral bending), and 7.6–8.4° (axial rotation). In contrast, CHARITÉ and 16 

ProDisc-L exceeded native norms, with flexion up to 13° and lateral bending up to ±10°. Native 17 

cadaveric ranges typically span 5.4–13° flexion, 1–5° extension, ~4.3° lateral bending, and 1–18 

5.8° axial rotation. The FLD more closely mirrored native biomechanics and demonstrated more 19 

controlled motion across all planes. 20 

Conclusions 21 

The AxioMed® FLD more accurately reproduces the native lumbar disc’s multidirectional 22 

motion than traditional articulating ball-and-socket TDRs. Its viscoelastic, one-piece design 23 
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enables motion damping and physiologic mobility, suggesting improved biomechanical 24 

compatibility for lumbar disc arthroplasty. This is a controlled in vitro biomechanical study. 25 

Findings highlight the potential for viscoelastic TDRs to better restore native spinal kinematics, 26 

warranting further clinical investigation. 27 

Clinical Relevance 28 

These findings highlight the potential of viscoelastic TDRs to more closely replicate native 29 

spinal kinematics than traditional articulating designs, supporting the need for further clinical 30 

evaluation in patients with lumbar DDD. 31 

32 

Keywords: AxioMed® viscoelastic disc replacement; Biomechanical Study; In Vitro; Range of 33 

Motion (ROM); Lumbar Spine; Total disc replacement (TDR); Intervertebral Disc. 34 

35 
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Introduction 38 

Lumbar degenerative disc disease (DDD) is one of the most prevalent causes of chronic low 39 

back pain and disability worldwide, contributing significantly to reduced quality of life and 40 

economic burden [1].  DDD results from structural and biomechanical changes in the disc, often 41 

driven by aging but also influenced by factors such as genetics, obesity, smoking, trauma, and 42 

repetitive spinal loading, particularly in physically active populations [2-5].  While conservative 43 

management can alleviate symptoms in many patients, a subset with progressive structural 44 

degeneration requires surgical intervention. Spinal fusion remains the gold standard for such 45 

cases; however, it eliminates motion at the treated level and has been associated with adjacent 46 

segment degeneration (ASD) due to altered spinal biomechanics [6, 7]. 47 

Total disc replacement (TDR) emerged as a motion-preserving alternative to spinal fusion, 48 

aiming to maintain physiological segmental motion and reduce the risk of ASD. Randomized 49 

controlled trials and long-term follow-ups have demonstrated that articulating TDRs, such as the 50 

CHARITÉ (DePuy Synthes, Raynham, MA, USA) and ProDisc-L (Centinel Spine, West 51 

Chester, PA, USA), can yield clinical outcomes comparable to fusion in well-selected patients 52 

[8-10]. CHARITÉ is an unconstrained design, featuring a mobile ultra-high molecular weight 53 

polyethylene core that articulates freely between cobalt-chrome endplates [11]. In contrast, 54 

ProDisc-L is a semi-constrained design with a fixed polyethylene core that limits translation and 55 

permits primarily rotational motion. Both devices use a ball-and-socket articulation to enable 56 

flexion-extension, lateral bending, and axial rotation. However, their mechanical behavior 57 

deviates from the native intervertebral disc, particularly in terms of viscoelasticity and 58 

compressive deformation [12, 13]. 59 
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Unlike the healthy lumbar disc, which exhibits nonlinear stiffness, energy damping, and time-60 

dependent deformation (creep and stress relaxation), articulating TDRs lack true shock 61 

absorption. They do not replicate axial compressibility or restore physiological load sharing, 62 

which may contribute to increased facet joint stress, altered kinematics, and implant-related 63 

complications over time [14, 15].  Additional complications such as osteolysis, heterotopic 64 

ossification, device migration, and loss of sagittal balance have been associated with articulating 65 

TDRs [16-19]. 66 

Next-generation designs have sought to overcome these limitations. The AxioMed® Freedom 67 

Lumbar Disc (FLD) (AxioMed LLC, Burlington, MA, USA) is a one-piece, viscoelastic TDR 68 

(VTDR) implant comprising a thermoplastic elastomer core bonded chemically and 69 

mechanically to titanium alloy endplates. The design aims to restore the spine’s native 70 

multidirectional motion while preserving its viscoelastic, load-bearing, and shock-absorbing 71 

properties [20].  A growing body of clinical studies supports the effectiveness of the AxioMed® 72 

VTDR [21-23].  Rischke et al. [22] reported significantly greater relief of leg and back pain 73 

following VTDR compared to anterior lumbar interbody fusion (ALIF).   74 

Although prior mechanical studies have characterized the FLD’s behavior under load [20, 24], 75 

few have directly compared its performance to both traditional articulating TDRs and cadaveric 76 

benchmarks of healthy lumbar segments. Such comparative analyses are essential to 77 

contextualize newer viscoelastic technologies within the broader evolution of spinal arthroplasty. 78 

The aim of this in vitro biomechanical study was to compare the range of motion (ROM) of the 79 

AxioMed® FLD across multiple planes to established data for the CHARITÉ and ProDisc-L 80 

devices, as well as to cadaveric data representing the biomechanical norms of the native lumbar 81 

spine. We hypothesized that the FLD would more closely replicate native lumbar disc 82 
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biomechanics and provide more controlled motion than unconstrained and semi-constrained 83 

articulating TDRs. 84 

 85 

Materials and Methods 86 

Mechanical testing of the AxioMed® Freedom Lumbar Disc (FLD) was performed in accordance 87 

with ASTM F2346 and F2423 standards for evaluating the functional and kinematic properties of 88 

spinal total disc replacement (TDR) devices [20, 24-26].  All testing was conducted in a 89 

physiologically simulated environment using phosphate-buffered saline (PBS) at 37°C to 90 

approximate in vivo conditions. Testing was performed using INSTRON 8872/8874 and MTS 91 

810 servohydraulic test systems.  Range of motion (ROM) testing was conducted on ten FLD 92 

devices to evaluate performance under physiologic loads. Tests included flexion-extension (±8 93 

Nm), lateral bending (±12 Nm), and axial rotation (±6 Nm). Motion endpoints were recorded to 94 

assess conformity to native disc kinematics. 95 

For comparison, ROM data for the CHARITÉ and ProDisc-L devices were obtained from 96 

publicly available United States Food and Drug Administration (FDA) Summary of Safety and 97 

Effectiveness Data (SSED) and cadaveric studies [27-29].  Native lumbar disc ROM values were 98 

extracted from published cadaveric literature representing typical biomechanics. [27, 30-41].  99 

 100 

Results 101 

The AxioMed® FLD demonstrated ROM within physiologic limits observed in the human 102 

lumbar spine. Specifically, the FLD provided 3.0–5.3° of flexion at 8 Nm, 1.9–5.0° of extension 103 

at 6 Nm, ±4° of lateral bending at ±12 Nm, and 7.6–8.4° of axial rotation at ±6 Nm. In contrast, 104 

CHARITÉ and ProDisc-L showed higher ROM values, particularly in flexion and lateral 105 
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bending, up to 13° and ±10°, respectively. These values exceed typical cadaveric ranges and may 106 

increase the risk of hypermobility or facet joint overload. The FLD's motion more closely 107 

approximated native disc behavior, supporting its potential to restore segmental mobility while 108 

maintaining physiologic control [20]. 109 

Table 1 summarizes the comparative ROM data for the FLD, CHARITÉ, and ProDisc-L, 110 

alongside reference values for native lumbar discs. 111 

 112 

Discussion 113 

Key Findings 114 

To our knowledge, this is the first in vitro biomechanical study to directly compare the range of 115 

motion of a viscoelastic lumbar disc replacement to both articulating TDRs and native lumbar 116 

disc values. This biomechanical study compares the range of motion (ROM) of the AxioMed® 117 

FLD, a viscoelastic total disc replacement (TDR), with articulating TDRs, CHARITÉ and 118 

ProDisc-L, to evaluate how closely each replicates native lumbar disc behavior. The FLD 119 

exhibited ROM values within physiologic limits, while CHARITÉ and ProDisc-L demonstrated 120 

excessive motion, particularly in flexion and lateral bending. These findings indicate that the 121 

FLD more closely approximates native lumbar kinematics and may help mitigate the 122 

biomechanical complications associated with traditional ball-and-socket designs. 123 

Explanation of Findings 124 

The exaggerated ROM observed in CHARITÉ and ProDisc-L supports the hypothesis that 125 

unconstrained or semi-constrained articulations permit non-physiologic motion, contributing to 126 

increased facet joint stress and degeneration. The FLD's one-piece viscoelastic design allows for 127 

multidirectional movement while offering intrinsic motion damping and axial compression. This 128 
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biomimetic behavior may protect against excessive motion and associated mechanical overload, 129 

offering a key functional distinction from articulating TDRs. 130 

Strengths and Limitations 131 

A major strength of this study is the controlled, standardized in vitro testing environment using 132 

ASTM protocols to assess ROM under simulated physiologic conditions for AxioMed®. 133 

Comparative data from FDA summaries and published cadaveric studies strengthen the external 134 

validity. However, limitations include the absence of direct mechanical testing for CHARITÉ 135 

and ProDisc-L under identical conditions. Literature-derived data introduce variability due to 136 

differences in methodology. Additionally, the use of synthetic test environments cannot account 137 

for biological responses such as inflammation, bone remodeling, and implant-bone interface 138 

changes seen in vivo. 139 

Comparison with Similar Research 140 

Previous investigations into articulating ball-and-socket TDRs have reported increased ROM and 141 

elevated loading at the index level, often accompanied by reduced mobility at adjacent segments 142 

[42].  The degree of constraint inherent to articulating disc designs has been shown to influence 143 

postoperative spinal kinematics and load transmission [43].  Notably, biomechanical analyses 144 

have demonstrated that the geometric configuration of ball-and-socket implants significantly 145 

impacts segmental motion, facet joint contact forces, and stresses within the cancellous bone. 146 

These effects may be further amplified by anatomical variability between patients, suggesting 147 

that the traditional articulating ball-and-socket architecture may not be optimal for all individuals 148 

[44].   149 

Additional studies have raised concerns about increased facet joint loading following TDR, 150 

particularly with unconstrained or semi-constrained devices. Narendran et al.[45] observed 151 
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higher rates of facet joint interventions in TDR patients compared to those treated with fusion. 152 

Lemaire et al.[46] showed facet loading in torsion with CHARITÉ was 2.5 times that of intact 153 

discs. Multiple studies have demonstrated the impact of implant placement and ligament injury 154 

on facet forces [23, 47, 48]. Retrospective imaging studies have further corroborated these 155 

findings. Shim et al.[14] and Park et al.[49] reported significant postoperative progression of 156 

facet arthrosis in CHARITÉ and ProDisc-L patients. More recently, Furunes et al.[50] reported a 157 

36% progression of facet degeneration at 8-year follow-up. 158 

Implications and Actions Needed 159 

These findings support the FLD’s potential role as a motion-preserving alternative for treating 160 

lumbar degenerative disc disease, with improved biomechanical fidelity to the native disc. Future 161 

studies should focus on direct comparative testing between devices using uniform methods, as 162 

well as long-term clinical outcomes evaluating adjacent segment degeneration, facet arthrosis, 163 

and device survivorship. 164 

 165 

Conclusion 166 

This in vitro biomechanical study is the first to compare the range of motion of a viscoelastic 167 

total disc replacement, the AxioMed® Freedom Lumbar Disc (FLD), with both articulating 168 

TDRs, CHARITÉ and ProDisc-L, and native lumbar disc benchmarks. The FLD demonstrated a 169 

range of motion that remained within physiologic limits and more closely matched native disc 170 

behavior than the excessive mobility observed in the CHARITÉ and ProDisc-L designs. Its 171 

viscoelastic architecture, which allows for motion damping and axial compression, may offer 172 

advantages in minimizing facet joint stress and preserving adjacent segment function. These 173 

findings support the FLD as a next-generation, motion-preserving solution for lumbar disc 174 
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arthroplasty. Future clinical studies are warranted to validate these biomechanical advantages in 175 

vivo and assess long-term patient outcomes. 176 

 177 

  178 
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Figure Legend 314 

Figure 1: AxioMed Freedom Lumbar Disc (FLD) one-piece viscoelastic design. 315 

Figure 2: Range of motion in flexion: AxioMed versus Native Lumbar Disc. 316 

Figure 3: Range of motion in flexion: AxioMed versus Native Lumbar Disc. 317 
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Table 1. Comparative Range Of Motion Data of AxioMed FLD, CHARITÉ, ProDisc-L, and 1 

Native Lumbar Disc 2 

Parameter 

AxioMed 

FLD [20] 

CHARITÉ [27] ProDisc-L [29] 

Native 

Lumbar Disc 

Design Type 

One-piece 

viscoelastic 

Articulating 

Ball-and-socket 

(unconstrained) 

Articulating Ball-

and-socket  

(semi-constrained) 

Healthy 

volunteers & 

cadavers 

Flexion ROM (°) 3.0–5.3 8.11 13 

5.40-13 [27, 

37, 40, 41] 

Extension ROM (°) 1.9–5.0 4.67 7 

1-5 [27, 37,

40, 41] 

Axial Rotation ROM 

(°) 

7.6–8.4 8.39 ±3 

1-5.8 [27, 30,

38, 39]  

Lateral Bending ROM 

(°) 

±4 12.9 ±10 4.34 [27] 

Shock Absorption Yes No No Yes 

3 

FLD, Freedom Lumbar Disc; ROM, Range Of Motion. 4 

Table (Word format only)




