```
1 Feasibility of 1, 2, 3 and 4 level Cervical Viscoelastic Total Disc Replacement In An
```

- 2 Emerging Country: A Pilot Study
- 3
- 4 Kingsley R Chin MD^{1,2,3,4,5}
- 5 Vito Lore, P.E⁶
- 6 Roger D Sung MD⁷
- 7 Jeffrey R Carlson MD⁸
- 8 Mark W McFarland DO⁸
- 9 Erik Spayde MD⁹
- 10 William M Costigan MD¹⁰
- 11 Hope Estevez HS^{1,5}
- 12 Marilyn Speid HS^{1,5}
- 13 Chukwunonso C Ilogu, MD^{1,5}
- 14 Jason A Seale, MBBS^{1,5}
- 15
- ¹Less Exposure Spine Surgery Institute (LESS Institute aka LESS Clinic), Fort Lauderdale,
- 17 Florida, USA; ²LESS Institute of Jamaica, Kingston, St. Andrew, Jamaica, West Indies;
- ³Department of Orthopedics, Herbert Wertheim College of Medicine at Florida International
- 19 University, Miami, Florida, USA; ⁴Faculty of Science and Sports, University of Technology,
- 20 Kingston, St. Andrew, Jamaica; ⁵Less Exposure Spine Surgery (LESS) Society 501©(3), Fort
- 21 Lauderdale, Florida, USA; ⁶LESSpine, Burlington, MA, USA; ⁷Colorado Springs
- 22 Orthopaedic Group, Colorado Springs, CO, USA; ⁸Orthopaedic and Spine Center, Newport
- 23 News, VA, USA; ⁹St. Charles Spine Institute, Thousand Oaks, CA, USA; ¹⁰Congress
- 24 Orthopaedic Associates, Pasadena, CA, USA.
- 25
- 26 <u>Corresponding Author:</u>
- 27 Kingsley R. Chin, MD, MBA
- 28 Less Exposure Surgery Specialists Institute (LESS Institute aka LESS Clinic),
- 29 6550 N Federal Hwy, Suite 510, Fort Lauderdale, Florida, 33308.
- 30 Email: <u>kingsleychin@thelessinstitute.com</u>
- 31
- 32 Keywords: AxioMed[®] viscoelastic disc replacement; Degenerative disc disease (DDD);
- 33 Cervical spine; Total disc replacement (TDR); Multi-level.
- 34
- 35 Abstract word count: 255
- 36 Text word count: 2301
- 37 Number of references: 35
- 38 Number of tables and/or figures: 1 Table and 4 Figures
- 39 Number of videos: 1
- 40
- 41

1 Structured Abstract:

2 **Objective:**

3	To evaluate the feasibility and preliminary two-year postoperative outcomes of cervical
4	viscoelastic total disc replacement (cVTDR) across 1 to 4 levels in an emerging country. This
5	study aims to address the limitations of traditional anterior cervical discectomy and fusion
6	(ACDF), including technical complexity, higher complication risks, greater inventory
7	requirements, and limited infrastructure in resource-constrained settings, and highlight
8	cVTDR as a simplified and effective alternative.
9	Methods:
10	A prospective pilot study was conducted on six patients (mean age 50.67 years; five females,
11	one male) diagnosed with cervical degenerative disc disease. Fourteen AxioMed® Freedom
12	Cervical Discs were implanted across single to four levels (C3–C7). Outcome measures
13	included the Neck Disability Index (NDI), Visual Analog Scale (VAS) for pain, range of
14	motion (ROM) assessments, intraoperative blood loss, and radiographic evaluations. Results
15	were compared with single- and two-level cVTDR historical data.
16	Results:
17	Patients demonstrated significant clinical improvements, with mean NDI scores decreasing
18	from 67.33 to 16 and VAS scores from 9.5 to 1.83 at the two-year follow-up. ROM was
19	preserved across all treated segments, with no reported complications, revisions,

20 readmissions, adjacent segment disease, heterotopic ossification, or device failures.

Conclusions:

2	Cervical VTDR is a feasible and effective non-fusion alternative for managing cervical
3	degenerative disc disease across 1 to 4 levels, offering a simplified solution to the challenges
4	faced in emerging countries. Its streamlined design minimizes technical demands, reduces
5	inventory needs, and avoids complications associated with ACDF, making it a reliable choice
6	in resource-constrained healthcare systems. Further research with larger samples and
7	extended follow-up will help confirm these promising findings.
8	

1 Introduction

2	Cervical degenerative disc disease is a major cause of disability worldwide, often
3	necessitating surgical intervention when conservative treatments fail. Anterior cervical
4	discectomy and fusion (ACDF) remains the standard treatment for symptomatic cervical disc
5	degeneration, myelopathy, and radiculopathy ¹ . While effective, ACDF alters spinal
6	biomechanics, increasing intradiscal pressure and abnormal motion at adjacent levels (4),
7	contributing to adjacent segment disease (ASD) in up to 92% of patients within five years,
8	with an annual incidence of $2.9\%^{2-4}$.
9	Multi-level ACDF with plate fixation have better outcomes, however the fusion rates decline
10	as the number of levels increases, leading to the increased need for revision surgeries ^{5,6} .
11	Longer operative times, greater technical complexity, and the need for posterior
12	instrumentation further elevate complication risks ⁷ . Additionally, bone graft substitutes such
13	as demineralized bone matrix, hydroxyapatite, and beta-tricalcium phosphate introduce
14	potential complications, even in single- and two-level ACDF ⁸ . These limitations have driven
15	the development of motion-preserving alternatives to mitigate the biomechanical drawbacks
16	of fusion.
17	Cervical total disc replacement (TDR) was introduced in the 1990s as an alternative to
18	ACDF, preserving segmental motion and eliminating the need for plates, screws, interbody
19	cages, and bone grafts ⁹ . Traditional articulating TDRs (ATDRs), modeled after hip and
20	knee replacements, restore motion using ball-and-socket designs. These early TDRs
21	demonstrated clinical utility in the literature, establishing non-inferiority to ACDF ¹⁰⁻¹⁴ .

1	However, the intervertebral disc is not naturally articulating; it is viscoelastic, allowing for
2	multidirectional movement and shock absorption. Consequently, ATDRs have been
3	associated with complications such as osteolysis, heterotopic ossification (HO), device
4	migration, and loss of sagittal balance ¹⁵⁻¹⁷ . These limitations have necessitated further
5	advancements in disc replacement technology.
6	Viscoelastic total disc replacement (VTDR) was developed as the next generation of TDR to
7	better replicate the biomechanics of a healthy disc. Unlike ATDRs, AxioMed® VTDR
8	features a single-piece viscoelastic design that provides natural shock absorption, six degrees
9	of motion, and lordotic alignment ^{18,19} . A post-market analysis (PMA) European
10	demonstrated significant improvements in Neck Disability Index (NDI), Visual Analog Scale
11	(VAS) scores, and neurological function over two years in single- and two-level cervical
12	VTDR (cVTDR) patients, with no device failures, explantations, or radiographic evidence of
13	heterotopic ossification or osteolysis ²⁰ . However, the feasibility and outcomes of multi-level
14	applications remain unexamined.
15	This evaluation is particularly relevant in emerging countries, where motion-preserving spine
16	surgery remains underexplored. Complex spinal procedures such as multi-level ACDF
17	require specialized expertise, advanced instrumentation, and robust healthcare infrastructure,
18	all of which are often limited in resource-constrained settings. Additionally, revision
19	surgeries for ASD, nonunion, or hardware failure further complicate long-term treatment
20	planning. A motion-preserving solution that reduces surgical complexity, inventory demands,
21	and sterilization requirements could be highly beneficial.

1	Most TDR research has focused on single- and two-level applications, leaving outcomes at
2	three and four levels largely unexamined, despite promising results in a recent four-level
3	cervical disc arthroplasty study ²¹ . A critical gap remains in assessing the feasibility, safety,
4	and clinical effectiveness of VTDR in multi-level applications, particularly in resource-
5	limited settings. The objective of this pilot study was to assess the feasibility of 1-, 2-, 3-,
6	and 4-level cervical VTDR in Jamaica, an emerging country, over a two-year follow-up
7	period and determine whether its results align with previously published single- and two-level
8	data.
9	
10	Materials and Methods
11	Study Design
12	This prospective cohort pilot study enrolled six consecutive patients in 2017 from a single
13	center in Jamaica who underwent cVTDR with the AxioMed [®] Freedom Cervical Disc (FCD)
14	across multiple levels. All surgeries were performed by an experienced orthopedic spine
15	surgeon, assisted by a neurosurgeon, at a single hospital facility. Written informed consent
16	was obtained from all participants before enrollment. As an early feasibility study, the small
17	sample size was intended to provide preliminary insights into the safety and clinical
18	outcomes of multilevel cVTDR in a resource-limited setting.
19	Inclusion and Exclusion Criteria
20	Candidates were considered for surgery only after a minimum of six weeks of failed
21	conservative treatment. Indications for cVTDR surgery included symptomatic cervical

1	degenerative disc disease with radiculopathy, herniated cervical disc(s) with mild facet signal
2	changes suggestive of degeneration. Exclusion criteria included malignancy, infection and
3	unstable chronic medical conditions.
4	Assessment Parameters
5	Comprehensive clinical and radiographic assessments were conducted pre- and
6	postoperatively. Clinical evaluation included the Neck Disability Index (NDI) and Visual
7	Analog Scale (VAS) for pain to assess functional improvement and pain relief. Radiographic
8	assessments focused on device positioning, postoperative complications, and the need for
9	revision surgeries.
10	Surgical Technique
11	Patients were positioned supine under general anesthesia. Using an anterior cervical
12	approach, a horizontal midline incision was used to access the surgical level(s). A total
12 13	approach, a horizontal midline incision was used to access the surgical level(s). A total discectomy was performed using a high-speed burr and curettes. The posterior longitudinal
13	discectomy was performed using a high-speed burr and curettes. The posterior longitudinal
13 14	discectomy was performed using a high-speed burr and curettes. The posterior longitudinal ligament was preserved whenever possible to maintain segmental stability. The endplates
13 14 15	discectomy was performed using a high-speed burr and curettes. The posterior longitudinal ligament was preserved whenever possible to maintain segmental stability. The endplates were prepared without keel cuts, and an implant trial was used to determine the appropriate
13 14 15 16	discectomy was performed using a high-speed burr and curettes. The posterior longitudinal ligament was preserved whenever possible to maintain segmental stability. The endplates were prepared without keel cuts, and an implant trial was used to determine the appropriate width and height. Due to inventory constraints, only 8-degree cVTDR implants were
13 14 15 16 17	discectomy was performed using a high-speed burr and curettes. The posterior longitudinal ligament was preserved whenever possible to maintain segmental stability. The endplates were prepared without keel cuts, and an implant trial was used to determine the appropriate width and height. Due to inventory constraints, only 8-degree cVTDR implants were available, and the closest fitting size was selected for each patient. Higher degree lordosis
 13 14 15 16 17 18 	discectomy was performed using a high-speed burr and curettes. The posterior longitudinal ligament was preserved whenever possible to maintain segmental stability. The endplates were prepared without keel cuts, and an implant trial was used to determine the appropriate width and height. Due to inventory constraints, only 8-degree cVTDR implants were available, and the closest fitting size was selected for each patient. Higher degree lordosis was not indicated due to lack of substantial kyphosis. The selected disc was then inserted

21 *Statistics*

1	Statistical analyses were executed utilizing Visual Studio (VS) Code (version 1.83.2), the
2	Anaconda3 (Python 3.11.4) kernel within VS Code, and a comprehensive suite of packages,
3	including 'pandas,' 'numpy,' 'datetime,' 'matplotlib,' 'altair,' 'seaborn,' 'statsmodels,'
4	'math,' 'pingouin,' and 'scipy.' The Mann-Whitney U test was used to compare VAS and
5	NDI scores between this cohort and previously published single- and two-level VTDR
6	outcomes by Chin et al. ²⁰ , as it is a non-parametric method suitable for comparing two
7	independent groups without assuming normal distribution. Cohen's d was calculated to
8	measure the effect size, indicating the magnitude of differences in pain and disability
9	outcomes.
10	
11	Results
11 12	Results The study cohort consisted of six patients, five of whom were female, with a mean age of
12	The study cohort consisted of six patients, five of whom were female, with a mean age of
12 13	The study cohort consisted of six patients, five of whom were female, with a mean age of 50.7 years (SD 14.1). The mean weight was 153.5 pounds (SD 21.9), and the average BMI
12 13 14	The study cohort consisted of six patients, five of whom were female, with a mean age of 50.7 years (SD 14.1). The mean weight was 153.5 pounds (SD 21.9), and the average BMI was 24.7 (SD 6.1). A total of 14 cVTDRs were implanted at cervical levels C3 through C7
12 13 14 15	The study cohort consisted of six patients, five of whom were female, with a mean age of 50.7 years (SD 14.1). The mean weight was 153.5 pounds (SD 21.9), and the average BMI was 24.7 (SD 6.1). A total of 14 cVTDRs were implanted at cervical levels C3 through C7 (Table 1). Two patients received single-level cVTDR at C5-6 (Figure 1), one patient
12 13 14 15 16	The study cohort consisted of six patients, five of whom were female, with a mean age of 50.7 years (SD 14.1). The mean weight was 153.5 pounds (SD 21.9), and the average BMI was 24.7 (SD 6.1). A total of 14 cVTDRs were implanted at cervical levels C3 through C7 (Table 1). Two patients received single-level cVTDR at C5-6 (Figure 1), one patient underwent a two-level cVTDR at C4-5 and C5-6 (Figure 2), two patients received three-level
12 13 14 15 16 17	The study cohort consisted of six patients, five of whom were female, with a mean age of 50.7 years (SD 14.1). The mean weight was 153.5 pounds (SD 21.9), and the average BMI was 24.7 (SD 6.1). A total of 14 cVTDRs were implanted at cervical levels C3 through C7 (Table 1). Two patients received single-level cVTDR at C5-6 (Figure 1), one patient underwent a two-level cVTDR at C4-5 and C5-6 (Figure 2), two patients received three-level cVTDR at C4-5, C5-6, and C6-7 (Figure 3), and one patient underwent a four-level cVTDR

2	hematomas, or neurological deficits, were reported.
3	Significant postoperative improvements were observed across all outcome measures.
4	Preoperative VAS scores decreased from a mean of 9.5 to 1.83 postoperatively, reflecting an
5	80.7% reduction ($p = 0.013$). Similarly, NDI scores improved from 67.3% preoperatively to
6	16% postoperatively, representing a 76.2% improvement ($p < 0.001$). Comparatively, in
7	Chin et al. ²⁰ reference cohort, VAS scores improved from 63 mm to 15 mm (76.2%
8	reduction, p < 0.001), and NDI scores improved from 48% to 4% (91.7% improvement, p <
9	0.001). Over the two-year follow-up period, no revision surgeries, readmissions or device
10	failures were reported in either group.
11	Radiographically, all VTDR implants remained stable at the two-year follow-up. One implant
12	in a single-level VTDR patient showed slight postoperative misplacement following a motor
13	vehicle accident but remained stable over time (Figure 1). No radiographic evidence of HO
14	was observed based on the McAfee classification ²² .
15	Statistical analysis
16	The analysis revealed significant pain relief and functional improvement in both the study
17	and reference cohorts. Postoperative VAS scores were significantly lower in the study cohort
18	compared to the reference cohort (U = 1.0, $p = 0.048$, $r = 0.68$). Similar statistical
19	significance was observed for NDI scores (U = 10.0, $p = 0.048$, $r = 0.68$), indicating
20	comparable clinical outcomes between the two groups.

improvement. No intraoperative or postoperative complications, including infections,

1	Cohen's d was calculated to assess the effect size of observed improvements. The effect size
2	for VAS was large (d = 4.68 for the study cohort and d = 3.56 for the reference cohort),
3	indicating a substantial reduction in pain for both groups. Similarly, the effect size for NDI
4	was large (d = 3.76 for the study cohort and d = 4.79 for the reference cohort), demonstrating
5	significant reductions in disability. These effect sizes confirm that the observed
6	improvements were both statistically significant and clinically meaningful.
7	
8	Discussion
9	This study evaluated the feasibility of cervical viscoelastic total disc replacement across
10	single and multi-level applications over a two-year period in an emerging country. It aimed to
11	expand current knowledge on VTDR's performance across multiple levels, an area with
12	limited published data, and to explore its potential as an alternative to ACDF, which is
13	associated with high risks of ASD due to its impact on cervical motion.
14	Key Findings
15	cVTDR demonstrated substantial improvements in clinical outcomes, with reductions of
16	80.7% in VAS scores and 76.2% in NDI scores, indicating significant pain relief and
17	functional improvement. No complications, revisions, or device failures were reported over
18	the follow-up period, underscoring the device's safety and reliability in the study cohort.
19	These results align with prior study by Chin et al. ²⁰ that showed similar improvements in
20	NDI and VAS scores, supporting the consistency of the implant's clinical efficacy.

- 1 Additionally, radiographic assessments showed stable implant positioning, with no HO,
- 2 osteolysis, or device migration, further suggesting the device's durability.
- 3 Comparison with Similar Research

4 Sheng et al. ²³ conducted a systematic review and meta-analysis examining the risks of HO

5 and fusion following cervical articulating TDR. Analyzing eleven studies with at least 10

6 years of follow-up, involving 1140 patients, they found that the overall incidence of HO was

7 70% at 10 years, 60% at five to six years, and 50% at one to two years postoperatively.

8 Specifically, the incidence of severe HO (grades 3 or 4) was 37%, while mild HO (grades 1

9 or 2) was 30% at the 10-year follow-up.

10 Risk factors for HO include a high degree of ossification before surgery²⁴, insufficient

11 endplate coverage of the prosthesis ²⁵⁻²⁷, intervertebral space height change before and after

12 surgery $\geq 1.8 \text{ mm}^{25}$, excessive intervertebral space distraction ²⁸ and disk space angle change

13 during operation > 5 degrees ²⁹ may lead to higher incidences of HO. The above patient

14 characteristics and surgical details may vary between studies. ProDisc-C (Centinel Spine,

15 West Chester, PA, USA) had the highest pooled overall HO rate (86%) at 10 years of follow-

16 up. Bryan (64%) and Prestige LP (62%) prostheses had a lower pooled overall HO rate.

17 Three critical factors contributing to the low incidence of HO and complications were

18 identified. First, a proper surgical technique, which avoids excessive burring of the endplates,

- 19 likely reduced the risk of fusion ^{30,31}. Second, the cVTDR's non-articulating design does not
- 20 rely on perfect centralization for effective functioning, reducing the likelihood of abnormal
- 21 kinematics seen in earlier devices that required precise placement ^{32,33}. Third, minimizing

2	as evidenced by the absence of complications even in cases where slightly undersized
3	implants were used ^{15,34} .
4	Limitations
5	This study has several limitations. The small sample size limits the generalizability of
6	findings to larger populations, and the single-center nature of the study may restrict
7	applicability across different clinical settings. A two-year follow-up, while informative, is not
8	sufficient for assessing long-term complications such as late-onset HO or implant wear. The
9	absence of a control group or direct comparison with ACDF limits the ability to
10	comprehensively evaluate cVTDR's advantages over fusion. Furthermore, no economic
11	assessment was conducted, leaving questions regarding cost-effectiveness, particularly in
12	resource-limited settings.
13	Clinical Relevance
14	The results of this study are promising for the application of cVTDR as a non-fusion
15	alternative in managing cervical DDD, particularly across multiple levels. The absence of
16	complications and revision surgeries suggests that cVTDR may reduce the need for
17	reoperations, providing a cost-effective option that also preserves cervical motion. The cost
18	of the implant will be determined by market forces, but the cost of inventory, transportation,
19	and osteobiologics is expected to be higher for fusion compared to the AxioMed [®] disc, which
20	comes sterile-packed with a compact instrument kit containing mostly an inserter and trials.
21	Additionally, the average cost of readmission for ACDF is approximately \$25,000 ³⁵ , further

dead space in the disc cavity through proper implant sizing further mitigated the risk of HO,

1	emphasizing the potential cost savings with cVTDR. Its viscoelastic, non-articulating design
2	simplifies the implantation process, which could be beneficial in diverse clinical settings,
3	including those where specialized surgical expertise may be limited. The favorable
4	radiographic outcomes observed even in multi-level cases support cVTDR's reliability as a
5	solution for managing cervical disc disease without the risks associated with fusion.
6	Implications for Further Research
7	Larger, multi-center studies are essential to confirm these findings and evaluate cVTDR's
8	performance across varied clinical settings. Extended follow-up periods are necessary to fully
9	assess the device's durability and to monitor for late-onset complications, such as HO or
10	implant failure. Comparative studies with ACDF and other TDR systems would provide a
11	more comprehensive understanding of the device's relative advantages. Additionally, future
12	research should include economic analyses to determine cost-effectiveness, especially in low-
13	and middle-income settings where healthcare budgets may be constrained.
14	
15	Conclusion
16	Cervical viscoelastic total disc replacement showed significant clinical improvements and
17	radiographic stability across 1 to 4 cervical levels over two years, with reduced pain and
18	disability scores and no complications or revisions. These results align with previous single-
19	and two-level studies, highlighting cVTDR as a reliable, motion-preserving alternative to
20	fusion, especially in multi-level cases. Conducted in Jamaica, an emerging country, this pilot
21	study demonstrates cVTDR's feasibility in resource-constrained settings, where reduced

1	inventory needs and simplified procedures are particularly beneficial. Consistent outcomes
2	across multiple surgeons indicate reproducibility and support broader clinical use. The
3	potential cost savings, including reduced reoperations, readmissions and lower inventory
4	demands, further emphasize cVTDR's value. This study offers preliminary evidence of
5	cVTDR's effectiveness, warranting further research to confirm long-term safety, efficacy, and
6	cost-efficiency in diverse clinical environments.
7	
8	References:
9	1. Peng J, Li S, Lin X, et al. Anterior cervical discectomy and fusion without plate
10	(ACDFWP) versus anterior cervical disc arthroplasty (ACDA) for cervical spondylosis: A
11	meta-analysis and literature review. Intractable Rare Dis Res. Aug 2022;11(3):105-112.
12	doi:10.5582/irdr.2022.01080
13	2. Hilibrand AS, Carlson GD, Palumbo MA, Jones PK, Bohlman HH. Radiculopathy and
14	myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis. J Bone
15	Joint Surg Am. Apr 1999;81(4):519-28. doi:10.2106/00004623-199904000-00009
16	3. Goffin J, Geusens E, Vantomme N, et al. Long-term follow-up after interbody fusion of
17	the cervical spine. J Spinal Disord Tech. Apr 2004;17(2):79-85. doi:10.1097/00024720-
18	200404000-00001
19	4. Dmitriev AE, Cunningham BW, Hu N, Sell G, Vigna F, McAfee PC. Adjacent level

20 intradiscal pressure and segmental kinematics following a cervical total disc arthroplasty: an

1 in vitro human cadaveric model. *Spine*. May 15 2005;30(10):1165-72.

2 doi:10.1097/01.brs.0000162441.23824.95

3 5. Wang JC, McDonough PW, Endow KK, Delamarter RB. Increased fusion rates with

4 cervical plating for two-level anterior cervical discectomy and fusion. Spine. Jan

5 2000;25(1):41-5. doi:10.1097/00007632-200001010-00009

6 6. Wang JC, McDonough PW, Kanim LE, Endow KK, Delamarter RB. Increased fusion

7 rates with cervical plating for three-level anterior cervical discectomy and fusion. Spine. Mar

8 15 2001;26(6):643-6; discussion 646-7. doi:10.1097/00007632-200103150-00015

9 7. Wang T, Long Y, Guo J, Hou Z. Comparison between 3-level and 4level anterior

10 cervical discectomy and fusion in the treatment of cervical spondylotic myelopathy: A meta-

11 analysis. Heliyon. Nov 2023;9(11):e21595. doi:10.1016/j.heliyon.2023.e21595

12 8. Cabrera JP, Muthu S, Mesregah MK, et al. Complications With Demineralized Bone

13 Matrix, Hydroxyapatite and Beta-Tricalcium Phosphate in Single and Two-Level Anterior

14 Cervical Discectomy and Fusion Surgery. *Global Spine J.* Feb 2024;14(2_suppl):78S-85S.

15 doi:10.1177/21925682231157320

16 9. Wellington IJ, Kia C, Coskun E, et al. Cervical and Lumbar Disc Arthroplasty: A

17 Review of Current Implant Design and Outcomes. *Bioengineering (Basel)*. May 23

18 2022;9(5)doi:10.3390/bioengineering9050227

19 10. Hisey MS, Bae HW, Davis R, et al. Multi-center, prospective, randomized, controlled

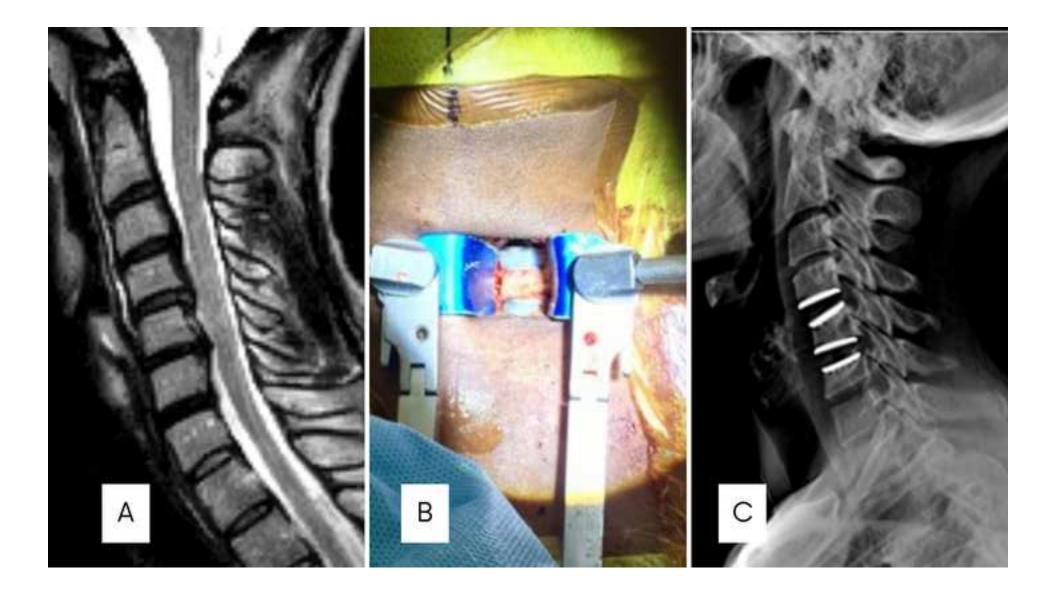
20 investigational device exemption clinical trial comparing Mobi-C Cervical Artificial Disc to

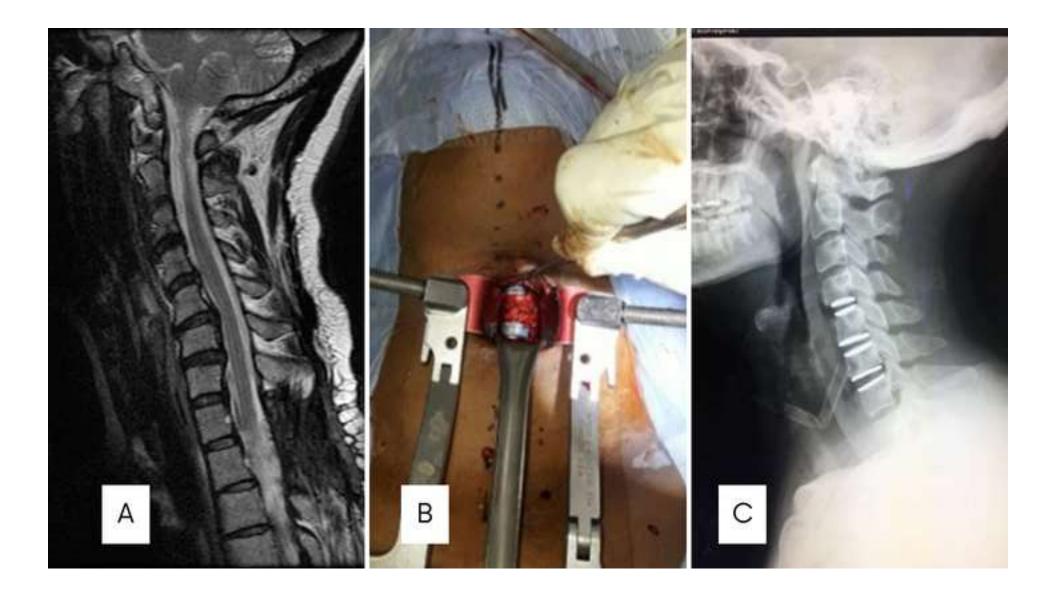
1	anterior discectomy and fusion in the treatment of symptomatic degenerative disc disease in
2	the cervical spine. Int J Spine Surg. 2014;8doi:10.14444/1007
3	11. Hisey MS, Zigler JE, Jackson R, et al. Prospective, Randomized Comparison of One-
4	level Mobi-C Cervical Total Disc Replacement vs. Anterior Cervical Discectomy and Fusion:
5	Results at 5-year Follow-up. Int J Spine Surg. 2016;10:10. doi:10.14444/3010
6	12. Radcliff K, Davis RJ, Hisey MS, et al. Long-term Evaluation of Cervical Disc
7	Arthroplasty with the Mobi-C(c) Cervical Disc: A Randomized, Prospective, Multicenter
8	Clinical Trial with Seven-Year Follow-up. Int J Spine Surg. 2017;11(4):31.
9	doi:10.14444/4031
10	13. Delamarter RB, Murrey D, Janssen ME, et al. Results at 24 months from the prospective,
11	randomized, multicenter Investigational Device Exemption trial of ProDisc-C versus anterior
12	cervical discectomy and fusion with 4-year follow-up and continued access patients. SAS J.
13	2010;4(4):122-8. doi:10.1016/j.esas.2010.09.001
14	14. Gornet MF, Lanman TH, Burkus JK, et al. Cervical disc arthroplasty with the Prestige
15	LP disc versus anterior cervical discectomy and fusion, at 2 levels: results of a prospective,
16	multicenter randomized controlled clinical trial at 24 months. Journal of neurosurgery Spine.
17	Jun 2017;26(6):653-667. doi:10.3171/2016.10.SPINE16264
18	15. Hackel S, Gaff J, Pabbruwe M, et al. Heterotopic ossification, osteolysis and implant
19	failure following cervical total disc replacement with the M6-C artificial disc. Eur Spine J.
20	Mar 2024;33(3):1292-1299. doi:10.1007/s00586-024-08129-5

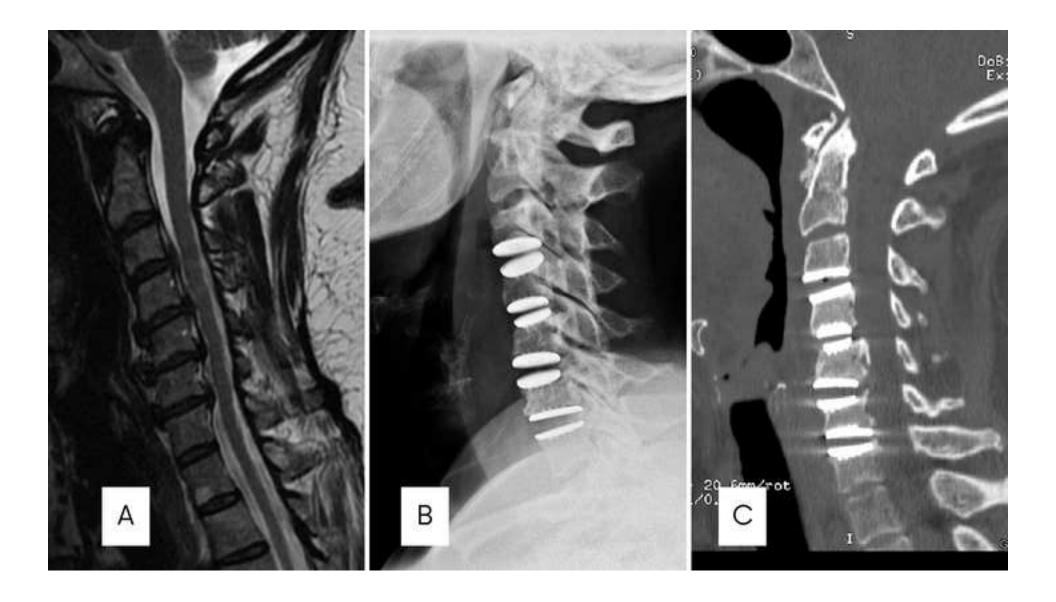
- 1 16. Mehren C, Suchomel P, Grochulla F, et al. Heterotopic ossification in total cervical
- 2 artificial disc replacement. Spine. Nov 15 2006;31(24):2802-6.
- 3 doi:10.1097/01.brs.0000245852.70594.d5
- 4 17. Leung C, Casey AT, Goffin J, et al. Clinical significance of heterotopic ossification in
- 5 cervical disc replacement: a prospective multicenter clinical trial. *Neurosurgery*. Oct
- 6 2005;57(4):759-63; discussion 759-63. doi:10.1093/neurosurgery/57.4.759
- 7 18. Jacobs CAM, Siepe CJ, Ito K. Viscoelastic cervical total disc replacement devices:
- 8 Design concepts. The spine journal : official journal of the North American Spine Society.
- 9 Dec 2020;20(12):1911-1924. doi:10.1016/j.spinee.2020.08.007
- 10 19. Lazennec JY. Lumbar and cervical viscoelastic disc replacement: Concepts and current
- 11 experience. World J Orthop. Aug 18 2020;11(8):345-356. doi:10.5312/wjo.v11.i8.345
- 12 20. Chin KR, Lubinski JR, Zimmers KB, Sands BE, Pencle F. Clinical experience and two-
- 13 year follow-up with a one-piece viscoelastic cervical total disc replacement. J Spine Surg.
- 14 Dec 2017;3(4):630-640. doi:10.21037/jss.2017.12.03
- 15 21. Chang HK, Chang CC, Tu TH, et al. Four-Level Cervical Disc Arthroplasty. Int J Spine
- 16 Surg. Nov 8 2024;18(5):514-520. doi:10.14444/8603
- 17 22. McAfee PC, Cunningham BW, Devine J, Williams E, Yu-Yahiro J. Classification of
- 18 heterotopic ossification (HO) in artificial disk replacement. J Spinal Disord Tech. Aug
- 19 2003;16(4):384-9. doi:10.1097/00024720-200308000-00010

1	23. Sheng XQ, Wu TK, Liu H, Meng Y. Incidence of Heterotopic Ossification at 10 years			
2	After Cervical Disk Replacement: A Systematic Review and Meta-analysis. Spine. Jul 1			
3	2023;48(13):E203-E215. doi:10.1097/BRS.000000000004674			
4	24. Wang H, Wang X, Liu H, Meng Y, Guo Y, Hong Y. Risk Factors for High-Grade			
5	Heterotopic Ossification After Total Disc Replacement: A Single-Center Experience of 394			
6	Cases. Neurosurgery. Oct 13 2021;89(5):852-861. doi:10.1093/neuros/nyab298			
7	25. Shen YW, Yang Y, Liu H, et al. Effects of endplate coverage and intervertebral height			
8	change on heterotopic ossification following cervical disc replacement. J Orthop Surg Res.			
9	Nov 25 2021;16(1):693. doi:10.1186/s13018-021-02840-5			
10	26. Xu S, Ou Y, Du X, He B, Li Y, Yu H. Heterotopic Ossification After Prestige-LP			
11	Cervical Disc Arthroplasty Is Related to Insufficient Sagittal Coverage of the Endplate By the			
12	Prosthesis. Med Sci Monit. Mar 22 2021;27:e929890. doi:10.12659/MSM.929890			
13	27. Zeng J, Liu H, Chen H, et al. Effect of Prosthesis Width and Depth on Heterotopic			
14	Ossification After Cervical Disc Arthroplasty. Spine. May 1 2019;44(9):624-628.			
15	doi:10.1097/BRS.00000000002915			
16	28. Wang X, Liu H, Meng Y, et al. Effect of Disc Height and Degree of Distraction on			
17	Heterotopic Ossification After Cervical Disc Replacement. World Neurosurg. Jan			
18	2021;145:e100-e107. doi:10.1016/j.wneu.2020.09.134			
19	29. Hu L, Zhang J, Liu H, et al. Heterotopic ossification is related to change in disc space			
20	angle after Prestige-LP cervical disc arthroplasty. Eur Spine J. Oct 2019;28(10):2359-2370.			
21	doi:10.1007/s00586-019-06053-7			


1	30. Cheng CC, Ordway NR, Zhang X, Lu YM, Fang H, Fayyazi AH. Loss of cervical				
2	endplate integrity following minimal surface preparation. Spine. Aug 1 2007;32(17):1852-5.				
3	doi:10.1097/BRS.0b013e31811ece5a				
4	31. Lin M, Paul R, Shapiro SZ, et al. Biomechanical Study of Cervical Endplate Removal on				
5	Subsidence and Migration in Multilevel Anterior Cervical Discectomy and Fusion. Asian				
6	Spine J. Oct 2022;16(5):615-624. doi:10.31616/asj.2021.0424				
7	32. Chin KR, Pencle FJR, Mustafa LS, Mustafa MS, Quijada KA, Seale JA. Incidence of				
8	Fusion Across Total Disc Replacement With Heterotopic Ossification: Are Ball and Socket				
9	Disk Replacements Fusing With and Without Radiographic Evidence. Clinical spine surgery.				
10	Dec 2019;32(10):E469-E473. doi:10.1097/BSD.000000000000866				
11	33. Chin KR, Pencle FJR, Benny A, Seale JA. Placing ball and socket cervical total disc				
12	replacement using instant center of rotation. Journal of orthopaedics. Sep-Oct				
13	2019;16(5):390-392. doi:10.1016/j.jor.2019.04.005				
14	34. Carrera DA, Ricks CB. Catastrophic delayed cervical arthroplasty failure: illustrative				
15	case. J Neurosurg Case Lessons. Mar 14 2022;3(11)doi:10.3171/CASE21731				
16	35. Gowd AK, Agarwalla A, Beck EC, et al. Prediction of Admission Costs Following				
17	Anterior Cervical Discectomy and Fusion Utilizing Machine Learning. Spine. Nov 15				
18	2022;47(22):1549-1557. doi:10.1097/BRS.00000000004436				
19 20					


1 Figure Legend


- 2 Figure 1: Single-level C5-6 case: (A) Intraoperative photo of the implanted AxioMed[®] disc,
- 3 (B) Lateral fluoroscopic image, (C) Postoperative lateral radiograph.
- 4 Figure 2: Two-level C4-6 case: (A) Preoperative magnetic resonance imaging (MRI), (B)
- 5 Intraoperative photo, (C) Postoperative lateral radiograph.
- 6 Figure 3: Three-level C4-7 case: (A) Preoperative magnetic resonance imaging (MRI), (B)
- 7 Intraoperative photo showing 2 of the 3 AxioMed[®] discs, (C) Postoperative lateral
- 8 radiograph.
- 9 Figure 4: Four-level C3-7 case with ossification of the posterior longitudinal ligament: (A)
- 10 Preoperative magnetic resonance imaging (MRI), (B) Postoperative lateral radiograph and
- 11 (C) Postoperative sagittal computed topography (CT) showing stable AxioMed[®] implants.


	1		· •	
Age	Sex	Number of Level(s)	Level	Complications
54	F	Single	C5-6	None
31	М	Single	C5-6	None
39	F	Two	C4-5, C5-6	None
60	F	Three	C4-5, C5-6, C6-7	None
70	F	Three	C3-4, C4-5, C5-6	None
54	F	Four	C3-4, C4-5, C5-6, C6-7	None

1 Table 1: Patient demographics, levels treated, and complication overview

