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Abstract: This review covers recent compositions of bioactive glass, with a specific emphasis on both
inorganic and organic materials commonly utilized as matrices for injectable materials. The major
objective is to highlight the predominant bioactive glass formulations and their clinical applications
in the biomedical field. Previous studies have highlighted the growing interest among researchers in
bioactive glasses, acknowledging their potential to yield promising outcomes in this field. As a result
of this increased interest, investigations into bioactive glass have prompted the creation of composite
materials and, notably, the development of injectable composites as a minimally invasive method for
administering the material within the human body. Injectable materials have emerged as a promising
avenue to mitigate various challenges. They offer several advantages, including minimizing invasive
surgical procedures, reducing patient discomfort, lowering the risk of postoperative infection and
decreasing treatment expenses. Additionally, injectable materials facilitate uniform distribution,
allowing for the filling of defects of any shape.

Keywords: biomaterials; bioactive glass; hydrogel; cements

1. Introduction

Biomaterials play an essential role in today’s world, facilitating the healing of injured
tissues and restoring vital functions. Metals, ceramics, glass, plastics, and even living
cells and tissues can be used to fabricate biomaterials aimed at supporting, enhancing
or replacing damaged tissues [1]. The first definition was given in 1976 by the European
Society for Biomaterials. Since then, it has changed due to the evolution of the field;
biomaterial is now defined as “a material designed to interact with biological systems to
assess, treat, enhance or replace any tissue, organ or function of the body [2].

Biomaterials have traditionally been used to replace damaged or unhealthy tissues.
The production of the first biomaterials was carried out with the aim of obtaining the most
bioinert materials possible and thereby minimizing the appearance of scar tissue at the
interface with the host tissues [3]. The year 1969 marked the development of bioactive glass
by Professor Hench, who developed a new biocompatible substance that could be combined
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with calcium to heal broken bones utilizing silica (glass) as the primary material. This
imitates healthy bone and encourages the formation of fresh new bone when introduced
into the bone tissue [4]. Its ability to regenerate and repair tissues in need led to the
emergence of a third generation of biomaterials—bioglass [5].

Bioactive glasses (BG) are being broadly considered for bone tissue engineering appli-
cations based on their ability to bind strongly to bone, which is mediated by the formation
of a carbonated hydroxyapatite surface layer [6]. Third-generation bioactive glass, compos-
ites, macroporous foams, injectable materials and others are designed to trigger genes that
promote regeneration of living tissues [7,8].

The enormous development of engineered materials has stimulated the extension of
injectable therapy to biomaterials, allowing several traditional treatments to become less
invasive. Injectable biomaterials have a number of advantages, such as the controllable
release of therapeutic agents, structural and physical framework, or stroma and stimulation
of biological events. By combining them with cells, genes or growth factors, the results
obtained will be enhanced, creating loading materials that can be encapsulated, transported,
retained or delivered in order to regenerate and repair tissues [9]. One drawback of
injectable biomaterials is that their study becomes more superficial as new materials, new
applications of known materials, and new combinations of materials emerge [10].

Injectable biomaterials are materials that can be managed and processed at room
temperature or at ambient temperature, with the ability to be extruded using a syringe and
then injected into the target site, where they later solidify in response to body conditions to
mold into the shape of the defect [11,12]. Injectability is commonly defined as either the
force required to inject a material or the percentage by weight of extruded material relative
to the original material under given conditions [11]. According to their characteristics,
injectable materials can be divided into injectable hydrogels, which are polymers containing
hydrophilic chains/segments that are water-soluble, and hydrophobic materials, which
contain mainly hydrophobic chains or moieties [12].

From a clinical perspective, the use of injectable materials has many advantages,
as it minimizes patient discomfort and the risk of infection, minimizes the duration of
intervention, accelerates postoperative recovery, and reduces treatment costs and scar
formation [13]. Another benefit of these materials is that they can be prepared even
before application, are simple to prepare and can easily fill irregular-shaped defects [7].
However, there are also limitations, especially those of a mechanical nature; these injectable
components can even flow from the intended site because the injectable material must be
fluid, which limits the rigidity and leads to injectable agents that are too “soft” to fully
match the local tissue [14]. Also, in the case of defects occurring near blood vessels, there is
a possibility of causing strokes if the injected material has low viscosity [15].

The continued development of new injectable biomaterials shows that there is a strong
tendency, due to clinical needs, for more advanced medical therapies and diagnostics [9].
Injectable biomaterials are versatile in nature, with a multitude of applications in tissue
engineering involving bone or cartilage replacement, musculoskeletal conditions, cardio-
vascular tissues, bone cement, bone defect fillers and skin [10]. They offer an alternative for
medical emergencies requiring bone reconstruction, and surgical intervention has more
disadvantages than advantages [16].

The aim of this research is to explore how bioactive glasses, when incorporated as
cement or hydrogels, can be applied in the field of biomedical engineering. By analyzing
their unique properties, the goal is to distinguish the advantages and disadvantages as-
sociated with these distinct forms of integration. In essence, the question asked is how
bioactive glasses can be used in combination with inorganic or organic matrix to for-
mulate injectable materials that can overcome specific challenges and make progress in
biomedical applications.
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2. Cements

Bone cement is an injectable and self-setting material that has recently become widely
used in hard tissue repairs, such as in orthopedics, orthodontics and plastic surgery [9].
Once cross-linked, the cement has a compact network structure or a degree of crystallization
that has a relatively higher elastic modulus than hydrogels [12]. Bone cement acts as a
binding material, connecting two substances. It can be characterized as a blend of powder
and liquid components, solidifying upon mixing and securely adhering to the body upon
implantation. This definition underscores its unique flexibility, allowing it to effectively
stabilize and fix materials at fractured sites within the living body as required [17–19].

Once implanted, the cement should ideally exhibit bioactivity and bioresorbability
while providing the necessary mechanical support to distribute the load with the adjacent
bone tissue [20,21]. For cement to be ideal for injection into bone defects, it should meet the
following conditions:

• Be easily injectable with appropriate homogeneity, cohesion and viscosity;
• Have an adequate curing time;
• Have a low risk of inducing necrosis;
• Have proper tensile, compressive and shear strength in accordance with the injec-

tion site;
• Have stiffness after curing similar to that of the surrounding bone;
• Have a high radiopacity to be easily distinguishable from surrounding tissues on x-ray

imaging;
• Be bioactive;
• Have a resorption rate similar to that of the new tissue formation, such as during

this complex process of resorption and new bone formation, the characteristics to be
maintained properly;

• Have micro- and macropores to allow nutrient transfer, angiogenesis and osseointe-
gration to occur [20].

Some of the most important aspects to be considered are the rheological properties
of a bone replacement paste, represented by injectability, cohesiveness and viscosity. In-
jectability can often be improved by using a higher liquid-to-powder ratio in the formation
of the paste, which results in lower viscosity. However, this often leads to longer curing
times, higher solid–liquid segregation tendency and lower ultimate strengths. Also, when
a paste, which is a two-phase mixture of a finely divided solid and a liquid, is subjected to
a pressure gradient, the liquid may flow faster than the solid, leading to local changes in
the composition of the paste [22,23]. What makes injectable cements increasingly used are
their advantageous characteristics, such as their plasticity and formability, as well as in situ
self-healing and implantation through non-invasive procedures [22].

Depending on their chemical composition, injectable bone cements can be classified as
acrylic bone cements (ABCs), calcium phosphate cements (CPCs), calcium sulfate cements
(CSC) and filamentary composite materials. Alternatively, depending on the nature of the
orthopedic application, injectable cements may be grouped into those for high-load-bearing
applications (ABCs), medium load-bearing applications (ABCs, several CPC and certain
CSC) and low-load applications (certain CPCs and CSC) [23] (Figure 1).
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Figure 1. Cement paste formation and applications [24].

2.1. Acrylic Bone Cements (ABCs)

Acrylic bone cement is a dominant fixation material that is used in orthopedics, espe-
cially in joint arthroplasty, and this category includes poly(methylmethacrylate) (PMMA)
polymer. Originally, this polymer emerged in the 1928s under the name Plexiglass as a
replacement for transparent glass, and since 1960, it has been used in biomedical applica-
tions, particularly as a method of fixing joint replacements to the bone [25]. For more than
50 years, ABCs, in particular, PMMA-based formulations, have been widely used as an
anchoring/fixing agent in implants such as hip implants, knee implants and a wide variety
of other arthroplasty fixation.

PMMA is prepared by mixing two components, a liquid phase and a powder phase [26]:

• The liquid component contains three basic ingredients: MMA monomer; N,N-Dimethyl-
p-toluidine as an accelerator of the polymerization reaction; and hydroquinone, which
acts as an inhibitor, preventing premature polymerization of the monomer. This is a
volatile, transparent, low-viscosity component.

• The solid component also contains three basic ingredients: PMMA granules; benzoyl
peroxide, which acts as an initiator; and barium sulfate or zirconium dioxide, which is
added to obtain radiopacity.

Following the success of ABCs in arthroplasty fixation, injectable ABCs have emerged
with applications in stabilizing vertebral compression fractures or straightening osteo-
porotic vertebral body fractures, namely vertebroplasty and kyphoplasty. In this case,
injectable ABCs contain an additional amount of radiopacifier. In addition to these ap-
plications, ABCs mixed with bioglass have also been investigated as drug delivery [27],
orthodontic adhesive [28] or coating material [29], all demonstrating non-cytotoxicity, low
cost and minimal inflammatory reactions with the host tissue.

2.2. Calcium Sulphate Cements

Calcium sulfate has a history of over 90 years of use in orthopedics as bone void fillers
or in the delivery of various other bioactive molecules [30]. Its versatile character is due
to its fast and complete in vivo resorption, uniform crystal structure and very few trace
elements in its composition [31].

Calcium sulfate, or “gypsum”, is a mineral that occurs naturally as calcium sulfate
dihydrate (CaSO4·2H2O) [32]. Before its use in the medical field, it undergoes purification
to lose naturally occurring impurities such as silicates, lead and strontium. The first
step is water removal by calcination at 110 ◦C, resulting in calcium sulfate hemihydrate.
The hemihydrate obtained in the presence of water leads to a recrystallization of the
hemihydrate into a dihydrate by a slightly exothermic process [33,34].
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When calcium sulfate dissolves, it produces an acidic environment (pH = 5.6) that
helps to restrain bacterial activity. Its reabsorption takes place in 6–8 weeks with a minimal
increase in serum calcium levels and, therefore, leaves the hydroxyapatite particles as a
scaffold to promote bone growth [34]. However, its rapid resorption can be a problem as
it may be resorbed before the bone tissue is replaced by hydroxyapatite. For this reason,
in many cases, a biphasic material is used, whereas the calcium sulfate phase is resorbed,
pores are created in the material where cells and bone tissue can penetrate and accelerate
the resorption of the other phase, leading to new bone formation [35].

It has been shown that when bioactive glass is mixed with CPCs, injectable bone
cements with slower resorption and better osteogenic performance are developed. However,
the content of bioactive glass used is very low as it increases the pH in contact with body
fluid, which leads to alterations in the hydration reactions of calcium sulfate, resulting in
its incomplete hardening. Consequently, this mixture improves the biogenic property but
deteriorates the long-term mechanical support [18]. The current literature supports the use
of calcium sulfate in several clinical applications, including filling for bone defects [31,36,37],
chronic osteomyelitis [38,39], furcation and periodontal defects [40] and drug release [39].

2.3. Calcium Phosphate Cements

The concept of calcium phosphates in medical applications first emerged in the early
1980s due to clinical studies on humans and animals [40]; since then, it has been intensively
studied, either biologically, morphologically or structurally [41–43]. Its use as a bone sub-
stitute resulted from its chemical similarity to the mineral phase of natural bone, which
is biocompatible, osteoconductive and resorbable [44,45]. However, their slow degrada-
tion rate, low strength and the absence of macroporosity for bone ingrowth can be an
impediment for certain applications [46,47].

Bone repair by conventional calcium phosphates therapies can be achieved in different
forms, including implantation of bone grafts either as blocks or as granules (it is necessary to
have prior knowledge about the shape and size of the defect, implantation of scaffolds by 3D
modeling of the substitutes), and there is a possibility that the scaffold is not fully adapted
to the shape of the defect [48–50]. These limitations can be surmounted by the production
of calcium phosphate injectable materials, with the great advantage of injecting it as a paste
that can be easily shaped and used through minimally invasive clinical procedures [49].

Calcium phosphates are generally synthesized by wet chemical methods such as
sol–gel synthesis and precipitation, hydrothermal synthesis or dry/solid-state reactions.
Regardless of the method of preparation, the products obtained have a limited range of
specific compositions and morphology [50]. CPCs consist of a liquid phase and at least one
calcium phosphate precursor that can be injected into the defect area [51]. In contact with
aqueous media, self-induced dissolution–precipitation reactions occur with the formation
of calcium-deficient hydroxyapatite [52]. The processing time of these cements is limited as
a result of the ongoing curing reaction [53].

CPCs provide bone biocompatibility; however, these materials should ideally degrade
at the same rate as the new bone formation, which leads to continuous support during the
healing. Due to low intrinsic porosity, CPCs do not provide tissue growth in conjunction
with degradation [54]. Therefore, degradable polymer microspheres have been introduced
into the ceramic matrix, which has been demonstrated to increase the degradation rate and
facilitate bone ingrowth [55–57].

In obtaining a paste similar to bone structure, the mechanical properties must be
taken into account. Although CPCs have low mechanical characteristics, they still resemble
cancellous bone [56]. A promising strategy to improve strength and fracture resistance is
the reinforcement of calcium phosphate with fibrous materials, like polymers or oxides,
such as ZrO2 or Al2O3; these biocomposites provide mechanical strength [51].

The most important applications of CPCs are in bone tissue engineering in the form
of pre-stable scaffolds or injectable pastes to deliver stem cells, drugs and growth factors.
The incorporation of bioactive molecules, cells, polymers and bioactive glass enhances the
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properties of CPCs—promoting bone regeneration and broadening their clinical applica-
tions [57].

3. Hydrogels

Hydrogels are three-dimensional hydrophilic, physically or chemically bonded poly-
mer networks that can act as a barrier to preventing bacterial infection and creating a
suitable environment for tissue regeneration [58]. In other words, hydrogels are hydrophilic
gels or colloidal gels in which water is the dispersion medium; its amount varies according
to different factors and is provided by capillary, osmotic and hydration forces [59]. An-
other characteristic of hydrogels is their ability to retain specific compounds that do not
change the structure of their swollen state when exposed to specific pressures [60]. Also,
they can significantly enhance bone vascularization and the impeachment of mineralized
collagen [61].

The process that leads to the formation of a hydrogel is called gelation, which is based
on intermolecular reactions between segments of a linear polymer. The molecular weight
increases to a point where it becomes infinite, as does the relaxation time, which is called
the gelation point, at which point there is no flow in the system, and the cross-linked
material becomes homogeneously distributed in the recipient. Research is currently aimed
at developing injectable hydrogels, which undergo in situ gelation by thermal stimulation.
They can be administered in liquid form, gelling at body temperature, as an alternative to
complex surgical procedures [62,63]. The advantage of hydrogels over scaffolds is that they
can fill small and irregular defects and incorporate cells exerting less stress over them and
therapeutic agents, which provides a new opportunity to regenerate and repair damaged
tissues [64,65].

Regarding the formation of an injectable product, the gelling process is an essential
step, so it is important to select a hydrogel preparation method that is consistent with the
structure and intended application. There are two main categories of hydrogels depending
on the cross-linking mechanism: physically cross-linked gels and chemically cross-linked
gels, which are differentiated by the formation of covalent bonds [64]. The degree of cross-
linking influences the swelling properties and integrity of the hydrogels. As the degree of
cross-linking increases, the hydrogel becomes less flexible in shrinking, swelling or phase
change in response to stimuli [65].

Physical hydrogels are semi-solid systems in which the polymeric assemblies are
formed by non-covalent bonds that have low energy and a finite lifetime, such as hydropho-
bic interactions, ionic interaction, hydrogen bonds, supramolecular chemistry, charge con-
densation and crystal formation [64]. They exhibit relatively mild preparation conditions,
which are favorable for medical applications, and reversible sol–gel conversion because
very low energies are required to break down the physical interactions between molecules.

The covalent bonds that form between polymer chains are the basis for the formation
of chemical hydrogels, and this cross-linking is irreversible. This type of hydrogel is a
macromolecule with an infinite relaxation time, which is a stable, adjustable structure
with good mechanical properties. Chemical cross-linking occurs under certain special
conditions and depends on the formation of covalent bonds between reactive groups
grafted onto the polymerization backbone [64]. These conditions include various processes
such as Michael addition [66], click chemistry [67], enzyme-mediated cross-linking [68] and
photopolymerization [69] (Figure 2).

Natural materials and biocompatible synthetic polymers have been explored to fab-
ricate injectable bioglass-based composite hydrogels for tissue engineering. Fibrous and
nanofibrous materials are used because they resemble the extracellular matrix [70]. Com-
mon natural polymers used in hydrogel formulations that contain bioglass are presented
below. Combining inorganic and organic matrices is crucial for bone tissue repair, allowing
customization to achieve specific properties. The inorganic matrix contributes to bioac-
tivity and mechanical strength, whereas the organic matrix provides resilience and shape
formability [71].
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3.1. Alginate

Alginate (ALG) is a natural, intensively studied polysaccharide that has demonstrated
great benefits as a biomaterial in biomedical applications such as cell delivery, scaffold
formation or treatment of organ failure [72,73]. It is considered to be biocompatible, non-
toxic, biodegradable and non-immunogenic, and it is found in abundance and has a
low price [74,75]. ALG is found in seaweed and is commonly extracted from brown algae
(Laminaria hyperborea, Laminaria japonica, Laminaria digitata, Ascophyllum nodosum, Macrocystis
pyriferath) by treatment with aqueous alkaline solutions [74]. This linear polysaccharide
is composed of two copolymers, α-L-guluronic acid and β-D-mannuronic acid, which
provide characteristic strength and flexibility [75]. Depending on the extraction source,
alginate contains different percentages of mannuronic and guluronic acid, which influence
the material properties [76]; for example, the mechanical properties of alginate depend on
the ratio of these repeating units together with their molecular weight [77].

Alginate hydrogel can be formed by various approaches, such as ionic and covalent
cross-linking [78]. In the presence of divalent ions, such as calcium ions, alginates have
the ability to form gels by cross-linking through the carboxyl groups in the polymer
chains. Under pregel circumstances, they are ionically complexed with positively charged
polyelectrolytes; in this manner, they form an alginate-based system [79].

Ionic cross-linking occurs with the help of divalent cations, which interact with gu-
luronic acid to form tightly bound ionic bridges [80]. Mannuronic acid monomers form
weak junctions with divalent cations by the coordination of divalent ions with four-carboxyl
groups, resulting in an egg-box arrangement. This cross-linking has two possibilities for
obtaining alginate hydrogels by internal or external gelation. Covalent cross-linking of
hydrogels generates strong and irreversible chemical bonds and is a promising way to
achieve controlled cross-linking of the mechanical properties of alginate-based hydrogels.
However, this method is not suitable for in situ scaffold injection, with possible exceptions
being photoreticulable and viscoelastic hydrogels with shear-thinning behavior [81].

The applications of alginate are manifold [82], and it can be easily modified into any
form, such as hydrogels, microspheres or microcapsules, sponges, foams, tubes and fibers.
Its cytocompatibility, water solubility, ability to undergo in situ gelation, and prolonged
release of active agents have made alginate intensively studied in bone regeneration [83–85].

3.2. Chitosan

Chitin is the second most abundant natural polysaccharide on the planet, originating
from the outer shells of crustaceans in insect exoskeletons as well as in fungal cell walls [84].
Chitin has great potential in wound healing, with current research focusing on its biomedi-
cal applications [83]. Chitosan is obtained by alkaline deacetylation of chitin, and it has
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a linear structure consisting of randomly D-glucosamine and N-acetylglucosamine units,
which are linked by β(1-4) glycosidic bonds [85–87].

Chitosan is degraded in the body by lysozyme—a non-specific protease, into non-toxic
oligosaccharides by depolymerization of β-1,4-glycosidic bonds and deacetylation of N-
acetyl bonds [88,89]. Its solubility is influenced by the positive charge of amino groups, and
its homeostatic activity is favored by its positive charge, thus being able to bond with the
negative charge of blood cell membranes [88]. The biocompatibility of chitosan decreases
with the increase in deacetylation, solubility and degradation rate [3]. Given its similarity
to glycosaminoglycans—the main components of the extracellular matrix of bone and
cartilage—chitosan can improve cell adhesion and proliferation [90–92].

Since this polymer is known to protect osteoblast proliferation and has antibacte-
rial and antifungal properties, chitosan is often found in porous scaffolds and wound
healing [93,94]. Owing to their controllable level of drug release, cross-linked chitosan
hydrogel matrices are found to be attractive in drug delivery applications [83]. Chitosan
and β-glycerophosphate-based thermogels are used as injectable osteogenic agents due to
their viscosity and gelation time [93].

Yao et al. [94] demonstrated that combinations of BG and chitosan can impact the
mechanical properties as well as their wet extensibility. Also, the incorporation of bioglass
to chitosan composites can enhance protein adsorption due to an increase in the number
of protein binding sites, leading to better cell adhesion. Bioactive glass nanoparticles also
provided a more intense effect than micro-sized bioglass. The incorporation of bioactive
glass particles into chitosan-based hydrogels has certain limitations, such as the chitosan
dissolving too quickly, causing poor mechanical properties [95]. One way to overcome this
limitation may be to modify chitosan through partial quaternization [96] or to incorporate
the bioglass as microbeads [90].

3.3. Collagen

Collagen is among the most abundant biomaterials and the principal organic com-
ponent of bone tissue, with a diverse range of biomedical applications [97–101]. It can
be processed in various forms, from sheets and sponges to scaffolds and injectable mate-
rials [100]. It is found in the composition of natural bone, which is made up of collagen
fibrils that are mineralized by hydroxyapatite-like phases, specifically calcium phosphate
phases [102]. In most tissues, it forms a structural network due to its high degree of
polymorphism [103,104].

Collagen is composed of three polypeptide strands arranged in a left-handed, polypro-
line II-type (PPII) helical conformation, coiling around each other with a one-residue stagger
to form a right-handed triple helix. The close arrangement of PPII helices within the triple
helix necessitates that every third residue is Glycine (Gly), leading to a recurring XaaYaaGly
sequence, where Xaa and Yaa represent any amino acid [103].

The properties of collagen, especially type I collagen, are similar to those found in
human tissue, such as its low immunological reaction index and its depth. Despite this,
due to the low mechanical strength, the use of collagen is limited; creating crosslinks in the
material may be a strategy used to overcome this limitation [104]. In addition, to stimulate
osteoinduction, collagen can be incorporated with bone morphogenetic proteins, giving
mixed results [105].

Collagen hydrogels are rapidly absorbed in vivo and are difficult to mineralize into
solutions that mimic human fluid [106,107]. The incorporation of inorganic materials
such as CPCs and bioactive glass particles has been shown to increase mineralization and
bioactivity but also to improve mechanical properties [108,109].

3.4. Gelatin

Gelatin is a natural, nontoxic, colorless protein derived from the denaturation of colla-
gen by hydrolysis [108]. It has a tissue repair capacity due to its precursor-like structure
that shows a high similarity to the extracellular matrix, stimulating cell adhesion [90]. Com-
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pared to collagen, gelatine can absorb up to 100 times more water, increasing cell spreading
and proliferation [109]. There is also no concern about the transmission of pathogens [110].
The unique amino acid sequence (i.e., glycine, proline and hydroxyproline)-RGD is valuable
because it promotes cell adhesion and differentiation. Low antigenicity, high solubility,
biodegradability and biocompatibility make gelatin suitable for hard and soft tissue appli-
cations [111].

Gelatin possesses the unique property of transitioning between colloidal and gel states,
a characteristic derived from the denaturation of its original polymer. This denaturation
disrupts the natural triple helix configuration of collagen fibers, allowing partial recovery
upon cooling. Gelation occurs between 35 and 40 ◦C, preserving a colloidal solution;
below this range, reconstruction of triple helices leads to gel formation [112]. The chemical
structure comprises hydrophilic polypeptide chains that are slightly or strongly cross-
linked. Because of this, gelatine can be dissolved in water using different configurations,
such as hydrogels, fibers, films or scaffolds [113].

The incorporation of bioactive glass into the gelatin matrix primarily improves me-
chanical stability due to the BG particles acting as a reinforcement, respectively, increasing
the degradation rate of the resulting material in the physiological environment by its
hydrophilicity and the release of BG ions into the aqueous environment accelerating the
degradation kinetics [114].

The use of gelatin as a copolymer in bioactive glass-based injectable materials im-
proves bioactivity and injectability. A limitation of these materials is their temperature
sensitivity, which implies low stability when injected into the body [115]. For this, a
third component can be used as a suitable crosslinker, such as polyethylene glycol, β-
glycerophosphate, hydroxyl propyl methylcellulose, glutaraldehyde [116,117]. In addition,
gelation time decreases and mechanical strength increases when gelatin is used as a copoly-
mer in chitosan–bioglass-based hydrogel [117].

3.5. Pectin

Pectin is a linear polysaccharide polymer produced from the primary cell walls of soil
plants, such as sunflower heads, citrus fruits and apple peels, by chemical or enzymatic
methods [118,119]. It has recently been exploited for extracellular matrix repopulation in
tissue regeneration; it is easily degradable, suggesting ideal biocompatibility and biosecu-
rity [120,121].

Chemically, pectin consists of partially esterified/amidated galacturonic acid residues
linked by linear 1,4-glycosidic bonds with varying degrees of methylation of carboxylic acid
residues, which influence its gelling properties. Depending on the degree of esterification
(DE), pectins can be classified as low methoxyl (DE < 50%) or high methoxyl (DE > 50%).
Low methoxyl pectins are able to form gels in the presence of divalent ions, such as Ca2+,
over a wider range of pH values. Methoxy groups can be converted to amide groups, which
change the properties of the gel, requiring less calcium for hydrogel formation and being
less prone to precipitate at high Ca2+ concentrations [121,122].

Pectin is used in various pharmaceutical and biomedical applications, particularly
in the treatment of cancer, due to its versatility. However, its low mechanical strength
and rapid degradation rate limit its use as a drug delivery device and as a tissue engi-
neering scaffold. One solution to combat these problems is to combine pectin with other
biopolymers and/or inorganic compounds [123].

Regarding hydrogels, one approach to induce cross-linking is internal gelation, using
inorganic agents such as CaCO3, hydroxyapatite and bioactive glass in particulate form.
These are dispersed in the polymer solution and act as release vehicles for the slow release
of Ca2+ ions that cross-link the polymer solution, thus creating homogeneous hydrogel
networks [122,124]. Calcium ions are rapidly dislodged from the egg-box structure of pectin
by other counterions (such as Na+), leading to the formation of soluble pectin from the
insoluble gel. Pectin in gel form has become attractive due to its mild solubility modulation
compared to other natural polymers such as alginates. In addition, gels can promote the
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nucleation of a mineral phase on pectin microspheres, with the formation of a biomimetic
construct, which better imitates the natural architecture of bone [119].

3.6. Hyaluronic Acid

Hyaluronic acid is a major component of the extracellular matrix of the joints and
skin and is synthesized at the cell surface [125]. In terms of chemical structure, it is a
polysaccharide with a high molecular mass (1000 and 8000 kDa) and consists of repeating
units of N-acetyl-D-glucosamine and D-glucuronic acid [77]. The discovery of hyaluronic
acid and the methods to obtain it have generated significant interest in the biomedical
applications of this biopolymer [109]. It is now produced by microbial fermentation,
for example, by Streptococcus zooepidemicus or by extraction from animal tissues such as
rooster combs. However, both methods suffer from low yields that increase the cost of the
feedstock compared to other natural polymers and raise concerns about the safety of using
the biomaterial [126].

Hyaluronic acid has a high renewal rate in the body and is biodegradable, contributing
to cell proliferation and migration. Due to these advantages, this polysaccharide has
numerous applications, such as drug delivery, tissue engineering and surface modification.
Hyaluronic acid is a fluid paste that flows under its own weight [127]. By incorporating
inorganic materials such as bioactive glass or calcium phosphate, these composites have
been shown to be suitable for injection with biodegradability, intense mineralization and
mechanical strength [128]. These properties have made these composite gels suitable for
applications in bone tissue engineering [129].

3.7. Gellan Gum

One polysaccharide that has begun to receive attention in tissue engineering is gellan
gum, produced by bacteria such as Sphingomonas paucimobilis. It is a non-toxic polymer,
which is available at a low price and avoids regulatory concerns about the use of animal
products [130]. In situ gelation and the adaptation of the degree of cross-linking have
led to gellan gum being investigated for various regenerative medical applications [131].
However, as with most natural polymers, the major drawback is its low mechanical proper-
ties [132].

In terms of chemical composition, native gellan gum is composed of repeating units of
glucose, glucuronic acid and rhamnose, and two acyl groups, acetate and glycerate, which
are linked to the glucose residue adjacent to glucuronic acid [133]. It consists of around
20% rhamnose, 20% glucuronic acid and 60% glucose [134]. There are two commercially
available forms, acetylated and deacetylated, with the most common and available being
deacetylated gellan gum. It becomes a hydrogel through a transition from the spiral form
present at high temperature to a double helix form at room temperature.

Gelation of the polymer is induced by adding cations to the gellan gum solution and
occurs gradually as the solution cools [135]. The nature of the cations used is important,
with divalent cations strongly favoring gelation over monovalent cations [136]. The use
of hydrazone as a potential cross-linker has proven to be effective, resulting in hydrogels
with improved properties that can be exploited in soft tissue engineering, with the material
having a stiffness similar to that of soft tissues [137]. Furthermore, if hydrogels are freeze-
dried and specifically rehydrated, they can become sponge-like hydrogels that will exhibit
different characteristics.

The formulation of injectable materials based on gellan gum and bioactive glass
particles has the advantage of cross-linking in the presence of divalent Ca2+ cations, which
function as potential ionic cross-linkers in the formation of gellan gum hydrogel [138]. It
has been shown that the use of a methacrylated gellan gum and collagen-based material
with bioglass particles can induce an autonomous osteogenic differentiation response of
human adipose-derived stem cells [139].
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4. Bioactive Glass-Based Formulations in Tissue Engineering

The incapacity of the human body to autonomously repair bone defects has necessi-
tated the appearance of conventional therapeutic methodologies. These include techniques
such as distraction osteogenesis, bone transport, various autologous and allogeneic bone
grafts, along with growth factors [140–142]. These approaches have become standard
practice in clinical settings, playing a pivotal role in inducing or enhancing bone regener-
ation [143,144]. In this context, novel approaches have been made to advance bioactive
glasses, which are characterized by modifications in composition, the formation of com-
posites and methods of implantation. These innovative materials are beginning to make
valuable contributions to the biomedical field, especially in the domain of orthopedic
applications [145,146].

The incorporation of bioactive glass under various compositions has yielded innova-
tive formulations, offering versatile solutions in the form of both cements and hydrogels.
This chapter explores formulations where bioactive glass plays a pivotal role, serving as a
key component in inorganic pastes and organic hydrogels. These formulations represent
a convergence of inorganic and organic matrices, presenting a novel approach to tissue
repair and regeneration.

Bone cement, as a type of bone filler, finds extensive application in diverse orthopedic
and dental implant fixations. The optimal bone cement should serve as an adhesive sub-
strate for osteoprogenitor cells to deposit bone matrix and progressively mineralize into
bone. To achieve this, the cement should undergo slow absorption, enabling the infiltration
and growth of newly formed bone into the material [147]. Among the most employed
bioglass cements for bone regeneration therapies is calcium phosphate, which is appreci-
ated for its biological attributes such as biocompatibility, bioactivity and osteoconductive
properties [148]. Table 1 illustrates the broad applications of cement materials employed in
conjunction with bioactive glass.

Table 1. Applications of bioactive glass-based cements.

Composition Glass Composition
(Molar Ratio) Applications References

Acrylic Bone Cements

58SiO2-36CaO-6P2O5 Drug delivery system [27]

45SiO2-24.5Na2O-24.5CaO-6P2O5 Denture base materials [28]

45SiO2-24.5Na2O-24.5CaO-6P2O5 Coatings [29]

5.5 Na2O-11.1
K2O-4.6MgO-18.5CaO-56.6B2O3-3.7P2O5

Bone regeneration [149]

45SiO2-24.5Na2O-24.5CaO-6P2O5 Bone regeneration [150]

24.5 SiO2-38CaO-12.7P2O5-24.8MgO Bone regeneration [151]

Ag doped 48SiO2-18Na2O-30CaO-3P2O5-
0.43B2O3-0.57Al2O3

Temporary prostheses [152]

Calcium Sulphate
Cements

60SiO2-35CaO-5P2O5 Tissue graft [39]

SiO2-CaO-P2O5-B2O3-MgO Polymorphic bone defect repair [153]

80SiO2-15CaO-5P2O5 Bone repair and drug release [154]

45SiO2-24.5Na2O-24.5CaO-6P2O5 Bone substitute [155]

45SiO2-30CaO-5P2O5-2B2O3-15CaCl2-3MgO Orthopaedics-vertebroplasty
and kyphoplasty [156]

Calcium Phosphate
Cements

45SiO2-24.5Na2O-24.5CaO-6P2O5
Cell proliferation and

osteogenic differentiation [157]

45SiO2-24.5Na2O-24.5CaO-6P2O5 Bone regeneration [158,159]

30.67CaO-43.14P2O5-9.42Na2O-14.32K2O-
2.45MgO Bone implant [160]
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Hydrogels based on bioactive glass find application in tissue engineering due to their
flexibility and compatibility with the body. The characteristics of an optimal injectable
hydrogel involve considerations of mechanical strength, viscoelasticity and biocompatibility.
Research indicates that collagen and chitosan are the predominant materials combined
with bioactive glass, likely due to their exceptional properties in mimicking the natural
extracellular matrix and facilitating tissue regeneration (Table 2).

Table 2. Applications of bioactive glass-based hydrogels.

Composition Glass Composition
(Molar Ratio) Applications References

Alginate

45SiO2-24.5Na2O-24.5CaO-6P2O5 Therapeutic angiogenesis [161]

SiO2-CaO-P2O5 Scaffolds in bone tissue engineering [162,163]

80SiO2-15CaO-5P2O5 Scaffolds in bone tissue engineering [164]

45SiO2-24.5Na2O-24.5CaO-6P2O5 Skin repair-promoting biomaterials [165]

49.46SiO2-6.6Na2O-27.27CaO-1.07P2O5-3SrO-
6.6K2O-3MgO-3ZnO Scaffolds in bone tissue engineering [166]

Chitosan

60SiO2-36CaO-4P2O5 Bone regeneration [167]

Ag-60SiO2-36CaO-4P2O5 Dental pulp repair [168,169]

64SiO2-31CaO-5P2O5 Scaffolds in bone tissue engineering [170]

Sr-45SiO2-24.5Na2O-24.5CaO-6P2O5 Repairing large bone injuries [171]

85SiO2-10CaO-5P2O5 Scaffolds in bone tissue engineering [104,172]

55SiO2-40CaO-5P2O5 Alveolar bone tissue engineering [173]

58SiO2-33CaO-9P2O5 Bone regeneration [174]

Collagen

45SiO2-24.5Na2O-24.5CaO-6P2O5 Scaffolds in bone tissue engineering [175]

85SiO2-15CaO Stem cell culture for bone
tissue engineering [176]

53SiO2-23Na2O-20CaO-4P2O5 Bone tissue engineering [177]

58SiO2-33CaO-9P2O5 Scaffolds in bone tissue engineering [178]

Gelatin

55SiO2-24CaO-6P2O5-15B2O3 Scaffolds in bone tissue engineering [179]

64SiO2-5P2O5-26CaO-5MgO Scaffolds for nerve regeneration [180]

45SiO2-24.5Na2O-24.5CaO-6P2O5 Hydrogel in hard tissue engineering [181]

64SiO2-27CaO-4MgO-5P2O5 Small bone defect [89]

Ag-58SiO2-33CaO-9P2O5 Bone tissue engineering [182]

54.2SiO2-35CaO-10.8P2O5 Pulp regeneration [183]

45SiO2-24.5Na2O-24.5CaO-6P2O5
Drug delivery as 3D sponge-like

scaffolds [184]

SiO2-B2O3-CaO-K2O-MgO-Na2O-P2O5 Bone tissue regeneration [185]

Pectin

40SiO2-54CaO-6P2O5
Injectable hydrogel in bone

tissue engineering [122]

45SiO2-24.5Na2O-24.5CaO-6P2O5 Soft and hard tissue engineering [186]

45SiO2-24.5Na2O-24.5CaO-6P2O5
Fiber construct in
bone regeneration [187]
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Table 2. Cont.

Composition Glass Composition
(Molar Ratio) Applications References

Hyaluronic acid

60SiO2-36CaO-4P2O5 Critical-size bone defect repair [188]

SiO2-CaO-P2O5
Scaffolds or coating in

tissue engineering [189]

47.5SiO2-2.5P2O5-20CaO-20MgO-10Na2O-
10K2O Scaffolds in bone tissue engineering [190]

SiO2-Na2O-K2O-CaO-MgO-P2O5 Soft tissue engineering [191]

58SiO2-33CaO-9P2O5 Bone tissue engineering [192]

50SiO2-45CaO-5P2O5 Coating in orthopaedic implants [193]

45SiO2-24.5Na2O-24.5CaO-6P2O5 Injectable bone substitute [194]

Gellan gum

54SiO2-40CaO-6P2O5 Injectable bone substitute [195]

70SiO2-30CaO Bone tissue engineering [196]

66SiO2-10Na2O-22CaO-2P2O5
70SiO2-30CaO Scaffolds in bone tissue engineering [132]

43.7SiO2-10.9B2O3-22.1CaO-7.9K2O-7.7MgO-
6.0Na2O-1.7P2O5

Bone tissue engineering [197]

Based on their composition, three classes of bioactive glasses are available: silicate,
borosilicate and phosphate-based BG; however, limited studies are available, especially
limited comparative studies.

Silicate-based bioactive materials, such as bioactive glass, have demonstrated an excel-
lent ability to form bone-like carbonated hydroxyapatite [198]. In vitro and in vivo experi-
ments [182,199] have shown that ion release from silicate-based BG activates macrophages
to the M2 phenotype, stimulating anti-inflammatory and angiogenic growth factors. Ad-
ditionally, in vitro studies revealed that BG promotes faster migration of fibroblasts and
endothelial cells, increasing fibroblast production of proteins and growth factors [200].
Specifically, silica ions stimulate osteoprogenitor cells at the genetic level, enhancing os-
teoblast migration, adhesion and proliferation at defect sites [201]. However, the lower
biological activity of these glasses is attributed to their interconnected linkages and high
silica content, which prevents the active components from easily leaving the surface [202].

Borosilicate is the second most studied type of bioactive glass after silicate-based BG.
Numerous studies have demonstrated that the boron content in BG significantly impacts its
mechanical and structural properties [1,203,204]. In borosilicate bioactive glass, the presence
of boron reduces reactivity and slows down the formation of apatite, which is essential
for bone regeneration. However, boron’s higher solubility results in faster dissolution of
the glass in bodily fluids [205,206]. Specific types of borate-based bioactive glass exhibit
exceptionally high elastic modulus and compressive strength. The high concentration of
boron released at the implantation site from borosilicate glasses slows the degradation
of biomaterials and increases the pH of the growth medium [201]. In vitro tests have
demonstrated that borosilicate glasses exhibit bioactive behavior [203,207]. In vivo studies
on volumetric muscle loss, as reported in Jia’s paper [208], have shown that borosilicate
glass possesses a desirable boron release profile. This release profile is crucial in promoting
angiogenesis and the proliferation of stem cells.

Phosphate-based glasses, with P2O5 as the network-forming oxide, offer excellent
biocompatibility and bioactivity across various biomedical applications [209]. They can be
enhanced with therapeutic ions, even if they are more prone to collapsing and crystallization
during mesoporous structure formation [210]. In vitro and in vivo studies have demon-
strated that phosphate-based BG are bioresorbable, interacting with physiological fluids
to produce the desired biological response and facilitate the regeneration of outgrowing
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axons [211]. Their composition, resembling bone and teeth more closely than silicate-based
glasses, enables mesoporous phosphate-based BGs to induce hydroxycarbonate apatite for-
mation on their surface [212]. Nonetheless, phosphate-based glasses encounter challenges
in long-term stability compared to silicate glasses due to lower chemical durability [212,213].
In a study conducted by McLaren [214], it was demonstrated that phosphate-based glass mi-
crospheres are biocompatible and promote new bone tissue formation and osteointegration,
making them suitable candidates for tissue regeneration applications.

Recent approaches are related to the development of composite materials combining
calcium phosphate (especially β-TCP) and bioactive glasses. The resulting composite
powders, as reported by Nakanishi et al. [215], for instance, have good porosity and
promote a good proliferation of the osteoblast cells, while Sujon et al. [216] proved that
the composite obtained between hydroxyapatite and 45S5 BG presented enhanced cell
adhesion and proliferation, and induce good hydroxyapatite forming ability. These results
can be a consequence of the coexistence of the individual BG and CPC phases, which are
beneficial at least for several properties, especially biological properties. A more complex
structure is reported by Park et al. [217] based on CaO-SiO2-P2O5-B2O3 bioactive glass
ceramic or PEK cage filled with hydroxyapatite/β-TCP.

In recent years, the incorporation of various biologically active ions into silicate,
phosphate and borosilicate bioactive glass systems has gained popularity. These additions
aim to enhance functional properties such as osteogenesis, angiogenesis, bioactivity and
antibacterial effects. For example, boron-based bioactive glass increases tissue regeneration
when doped with elements like magnesium, zinc and strontium [203,218]. Phosphate-based
bioactive glass doped with silver has demonstrated improved antimicrobial properties and
better dissolution in vitro due to the phosphate content [219]. Additionally, the doping
with strontium enhances the bioactivity and mechanical properties of phosphate glass
materials [220]. Silicate glasses doped with zinc, silver or gallium have shown antibacterial
activity against bone-specific bacterial strains [221–224], while copper-doped BG also
promoted angiogenesis in vivo studies. Ozel et al. [225] demonstrated that strontium
and zinc co-doped bioactive glass has a higher bioactivity, as indicated by the increased
crystallinity of hydroxyapatite formations compared to undoped bioactive glasses [224].
Numerous papers explore these BGs and the role of ion-doping with the commonly used
biologically active ions, most of the conclusions being similar to that obtained in the case
of doping hydroxyapatite, but the higher bioactivity can lead to a higher level of these
ions [202,226–228].

A systematic exploration of Scopus and Web of Science databases, focusing on articles
incorporating the terms “bioactive glass” and “injectable,” was conducted, covering data
from 2004 onward. The inquiry generated 140 results in Scopus and 233 in Web of Science.
When the search is refined using these keywords, insights into the increasing interest in
bioactive glass across diverse fields are gained. The chart below illustrates the number of
articles found each year, indicating a significant spike in research on injectable bioactive
glass, especially from 2020 onward (Figure 3).



Nanomaterials 2024, 14, 1196 15 of 24

Nanomaterials 2024, 14, x FOR PEER REVIEW  15  of  25 
 

 

of doping hydroxyapatite, but the higher bioactivity can  lead to a higher  level of these 

ions [202,226–228]. 

A systematic exploration of Scopus and Web of Science databases, focusing on arti-

cles incorporating the terms “bioactive glass” and “injectable,” was conducted, covering 

data from 2004 onward. The inquiry generated 140 results in Scopus and 233 in Web of 

Science. When the search is refined using these keywords, insights into the increasing in-

terest  in bioactive glass across diverse fields are gained. The chart below  illustrates the 

number of articles found each year, indicating a significant spike in research on injectable 

bioactive glass, especially from 2020 onward (Figure 3). 

 

Figure 3. Number of articles on injectable bioactive glass (2004–present). 

5. Conclusions and Future Directions 

The exploration of appropriate biomaterials for bone regeneration stands as a com-

plex challenge in biomedical research. The investigation into bioactive glasses emerges as 

a captivating research domain with encouraging outcomes. Over the past few decades, it 

has undergone comprehensive examination, addressing various challenges in the field of 

bone tissue engineering. L. Hench’s discoveries have served as a catalyst for numerous 

studies exploring various aspects of bioactive glass. While the majority still focus on the 

original 45S5 composition and implantation, a wealth of reports in the literature strongly 

suggest that novel bioactive glass formulations and delivery methods present fewer limi-

tations than the original counterpart [71,179,229]. Despite the promising results achieved 

thus far, additional research is imperative to solidify and comprehend all the complexities 

linked with bioglass. This includes a detailed examination of its specific compositions and 

an exploration of the impacts of long-term degradation under both in vivo and in vitro 

conditions,  crucial  for  its  eventual  clinical  application  in  bone  regeneration.  Current 

works are trying to develop composites based on BG and different CPCs, as well as poly-

mers, in order to tune the final characteristics of these materials further. 

Funding:  This  research  was  funded  by  UEFISCDI  within  the  project  “Functionаlizаtion  аnd 

decorаtion with nаnopаrticles of  the  glаss  surfаce.  А promising  аpproаch  to  inducing new  аp-

plicаtions”—PN-III-P1-1.1-TE-2021-1242, Ctr. No. TE95/2022 is highly acknowledged. 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 

1. Cannio, M.; Bellucci, D.; Roether,  J.A.; Boccaccini, D.N.; Cannillo, V. Bioactive Glass Applications: A Literature Review of 

Human Clinical Trials. Materials 2021, 14, 5440. https://doi.org/10.3390/ma14185440. 

0

5

10

15

20

25

30

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024

D
o
cu
m
en
ts

Year

”Injectable” ”bioactive glass”

Scopus Web of Science

Figure 3. Number of articles on injectable bioactive glass (2004–present).

5. Conclusions and Future Directions

The exploration of appropriate biomaterials for bone regeneration stands as a complex
challenge in biomedical research. The investigation into bioactive glasses emerges as a
captivating research domain with encouraging outcomes. Over the past few decades, it has
undergone comprehensive examination, addressing various challenges in the field of bone
tissue engineering. L. Hench’s discoveries have served as a catalyst for numerous studies
exploring various aspects of bioactive glass. While the majority still focus on the original
45S5 composition and implantation, a wealth of reports in the literature strongly suggest
that novel bioactive glass formulations and delivery methods present fewer limitations
than the original counterpart [71,179,229]. Despite the promising results achieved thus
far, additional research is imperative to solidify and comprehend all the complexities
linked with bioglass. This includes a detailed examination of its specific compositions and
an exploration of the impacts of long-term degradation under both in vivo and in vitro
conditions, crucial for its eventual clinical application in bone regeneration. Current works
are trying to develop composites based on BG and different CPCs, as well as polymers, in
order to tune the final characteristics of these materials further.
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